
repetition code can’t satisfy the requirement that the error probability
must be less than 10−15. In fact, Figure 17b shows that as we reduce
the error probability to 0, the rate also goes to 0 as well. Therefore,
there is no positive rate that works for all error probability.

� However, because the channel capacity is 0.531 [bpcu], there must ex-
ist other encoding techniques which give better error probability than
repetition code.

◦ Although Shannon’s result gives us the channel capacity, it does
not give us any explicit instruction on how to construct codes which
can achieve that value.

4.3 Information Channel Capacity

4.23. In Section 4.1, we have studied how to compute the value of mutual
information I(X;Y ) between two random variables X and Y . Recall that,
here, X and Y are the channel input and output, respectively. We have also
seen, in Example 4.14, how to compute I(X;Y ) when the joint pmf matrix
P is given. Furthermore, we have also worked on Example 4.15 in which the
value of mutual information is computed from the prior probability vector
p and the channel transition probability matrix Q. This second type of
calculation is crucial in the computation of channel capacity. This kind
of calculation is so important that we may write the mutual information
I(X;Y ) as I(p,Q).

Definition 4.24. Given a DMC channel, we define its “information” chan-
nel capacity as

C = max
p

I (X;Y ) = max
p

I
(
p,Q

)
, (34)

where the maximum is taken over all possible input pmfs p.

� Again, as mentioned in 4.20, Shannon showed that the “information”
channel capacity defined here is equal to the “operational” channel
capacity defined in Definition 4.19.

◦ Thus, we may drop the word “information” in most discussions of
channel capacity.
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Channel Capacity
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Channel Capacity

“Operational”: max rate at which reliable
communication is possible

“Information”: [bpcu]

Arbitrarily small error 
probability can be achieved.

Shannon [1948] shows that these two quantities are actually the same.

[Section 4.2]

[Section 4.3]

MATLAB
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function H = entropy2s(p)
% ENTROPY2S accepts probability mass function 
% as a row vector, calculate the corresponding 
% entropy in bits.
p=p(find(abs(sort(p)-1)>1e-8)); % Eliminate 1
p=p(find(abs(p)>1e-8)); % Eliminate 0
if length(p)==0

H = 0;
else

H = simplify(-sum(p.*log(p))/log(sym(2)));
end

function I = informations(p,Q)
X = length(p);
q = p*Q;
HY = entropy2s(q);
temp = [];
for i = 1:X

temp = [temp entropy2s(Q(i,:))];
end
HYgX = sum(p.*temp);
I = HY-HYgX;



Example 4.15. Find the mutual information I(X;Y ) between the two ran-

dom variables X and Y whose p =
[

1
4 ,

3
4

]
and Q =

[
1
4

3
4

3
4

1
4

]
.

Method 1: First, convert the given information into the joint pmf matrix.

Then, I(X;Y ) = H(X) +H(Y )−H(X, Y ).

Method 2: Use I(X;Y ) = H(Y )−H(Y |X).

(a) To find H(Y ), we need q(y):

q = pQ =

[
1

4
,
3

4

][1
4

3
4

3
4

1
4

]
=

[
10

16
,

6

16

]
=

[
5

8
,
3

8

]
.

This gives H(Y ) ≈ 0.9544.

(b) H(Y |X) =
∑

x p(x)H(Y |x). So, we need H(Y |x). Observe that each
row of Q is

[
1
4

3
4

]
. Therefore,

H(Y |x) = H
([

1
4

3
4

])
≈ 0.8113

for any x (for any row of Q). This gives

H(Y |X) =
∑
x

p(x)H(Y |x) ≈
∑
x

p(x)× 0.8113

= 0.8113

(∑
x

p(x)

)
= 0.8113.

Finally,
I(X;Y ) = H(Y )−H(Y |X) ≈ 0.1432.
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Capacity calculation for BAC
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Capacity of 0.0918 bits is achieved by p

0

1

0

1

0.9

0.1

0.4

0.6

X Y

Q

[Ex. 4.25, Fig. 18]

Capacity calculation for BAC

56

close all; clear all;
syms p0
p = [p0 1-p0];
Q = [1 9; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))
po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BAC
I =
(log(2/5 - (3*p0)/10)*((3*p0)/10 - 2/5) - log((3*p0)/10 + 3/5)*((3*p0)/10 + 

3/5))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) + 

(p0*log((3*3^(4/5))/10))/log(2)

p0o =
(27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 + 135164/109565

po =
0.5376    0.4624

C =
(log((3*3^(4/5))/10)*((27648*2^(1/3))/109565 - (69984*2^(2/3))/109565 + 
135164/109565))/log(2) - (log((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 + 
16384/547825)*((104976*2^(2/3))/547825 - (41472*2^(1/3))/547825 + 
16384/547825) + log((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 + 
531441/547825)*((41472*2^(1/3))/547825 - (104976*2^(2/3))/547825 + 
531441/547825))/log(2) + (log((5*2^(3/5)*3^(2/5))/6)*((27648*2^(1/3))/109565 -
(69984*2^(2/3))/109565 + 25599/109565))/log(2)

ans =
0.0918

0

1

0

1

0.9

0.1

0.4

0.6

X Y

[Ex. 4.25, Fig. 18]



Same procedure applied to BSC
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close all; clear all;
syms p0
p = [p0 1-p0];
Q = [6 4; 4 6]/sym(10);

I = simplify(informations(p,Q))

p0o = simplify(solve(diff(I)==0))
po = eval([p0o 1-p0o])

C = simplify(subs(I,p0,p0o))

eval(C)

>> Capacity_Ex_BSC
I =
(log((5*2^(3/5)*3^(2/5))/6)*(p0 - 1))/log(2) -
(p0*log((5*2^(3/5)*3^(2/5))/6))/log(2) - (log(p0/5 + 
2/5)*(p0/5 + 2/5) - log(3/5 - p0/5)*(p0/5 -
3/5))/log(2)
p0o =
1/2
po =

0.5000    0.5000
C =
log((2*2^(2/5)*3^(3/5))/5)/log(2)
ans =

0.0290

0

1

0

1

0.4

0.6

0.4

0.6

X Y

[Ex. 4.25, Fig. 19]
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Blahut–Arimoto algorithm
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function [ps C] = capacity_blahut(Q)
% Input:     Q  = channel transition probability matrix
% Output:    C  = channel capacity
%            ps = row vector containing pmf that achieves capacity

tl = 1e-8; % tolerance (for the stopping condition)
n = 1000; % max number of iterations (in case the stopping condition 

% is "never" reached") 
nx = size(Q,1); pT = ones(1,nx)/nx; % First, guess uniform X.
for k = 1:n

qT = pT*Q;
% Eliminate the case with 0
% Column-division by qT
temp = Q.*(ones(nx,1)*(1./qT));
%Eliminate the case of 0/0
l2 = log2(temp); 
l2(find(isnan(l2) | (l2==-inf) | (l2==inf)))=0;
logc = (sum(Q.*(l2),2))';
CT = 2.^(logc);
A = log2(sum(pT.*CT)); B = log2(max(CT));
if((B-A)<tl)

break
end
% For the next loop
pT = pT.*CT;     % un-normalized
pT = pT/sum(pT); % normalized
if(k == n)

fprintf('\nNot converge within n loops\n')
end

end
ps = pT;
C = (A+B)/2;

[4.26]

Capacity calculation for BAC: a revisit

61

close all; clear all;

Q = [1 9; 4 6]/10;

[ps C] = capacity_blahut(Q)

>> Capacity_Ex_BAC_blahut
ps =

0.5376    0.4624
C =

0.0918
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Prof. Toby Berger 80th Reunion Party
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Toby Berger with Berger plaque
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Richard Blahut
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Former chair of the 
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Computer 
Engineering 
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Calculation of C)
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Claude E. Shannon Award

64

Claude E. Shannon (1972)

David S. Slepian (1974)

Robert M. Fano (1976)

Peter Elias (1977)

Mark S. Pinsker (1978)

Jacob Wolfowitz (1979)

W. Wesley Peterson (1981)

Irving S. Reed (1982)

Robert G. Gallager (1983)

Solomon W. Golomb (1985)

William L. Root (1986)

James L. Massey (1988)

Thomas M. Cover (1990)

Andrew J. Viterbi (1991)

Elwyn R. Berlekamp (1993)

Aaron D. Wyner (1994)

G. David Forney, Jr. (1995)

Imre Csiszár (1996)

Jacob Ziv (1997)

Neil J. A. Sloane (1998)

Tadao Kasami (1999)

Thomas Kailath (2000)

Jack KeilWolf (2001)

Toby Berger (2002)

Lloyd R. Welch (2003)

Robert J. McEliece (2004)

Richard Blahut (2005)
Rudolf Ahlswede (2006)

Sergio Verdu (2007)

Robert M. Gray (2008)

Jorma Rissanen (2009)

Te Sun Han (2010)

Shlomo Shamai (Shitz) (2011)

Abbas El Gamal (2012)

Katalin Marton (2013)

János Körner (2014)

Arthur Robert Calderbank (2015)

Alexander S. Holevo (2016)

David Tse (2017) 

Gottfried Ungerboeck (2018)

Erdal Ar kan (2019)

Charles Bennett (2020)

[ http://www.itsoc.org/honors/claude-e-shannon-award ]
[ https://en.wikipedia.org/wiki/Claude_E._Shannon_Award ]



Example 4.25. The capacity of a BAC whose Q(1|0) = 0.9 and Q(0|1) =
0.4 can be found by first realizing that I(X;Y ) here is a function of a
single variable: p0. The plot of I(X;Y ) as a function of p0 gives some rough
estimates of the answers. One can directly solve for the optimal p0 by simply
taking derivative of I(X;Y ) and set it equal to 0. This gives the capacity
value of 0.0918 bpcu which is achieved by p = [0.5376, 0.4624].

Binary Asymmetric Channel (BAC)

1

Capacity of 0.0918 bits is achieved by  0.5380,  0.4620p 
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Figure 18: Maximization of mutual information to find capacity of a BAC channel. Ca-
pacity of 0.0918 bits is achieved by p = [0.5376, 0.4624]Binary Symmetric Channel (BSC)
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Figure 19: Maximization of mutual information to find capacity of a BSC channel. Capacity
of 0.029 bits is achieved by p = [0.5, 0.5]

4.26. Blahut-Arimoto Algorithm [5, Section 10.8]: Alternatively, in
1972, Arimoto [1] and Blahut [2] independently developed an iterative al-
gorithm to help us approximate the pmf p∗ which achieves capacity C. To

do this, start with any (guess) input pmf p0(x), define a sequence of pmfs pr(x), r = 0, 1, . . .
according to the following iterative prescription:

(a) qr (y) =
∑
x
pr (x)Q (y |x) for all y ∈ Y.

(b) cr (x) = 2

(∑
y
Q(y|x ) log2

Q(y|x )
qr(y)

)
for all x ∈ X .
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(c) It can be shown that

log2

(∑
x

pr (x) cr (x)

)
≤ C ≤ log2

(
max
x

cr (x)
)
.

� If the lower-bound and upper-bound above are close enough. We take pr(x) as our
answer and the corresponding capacity is simply the average of the two bounds.

� Otherwise, we compute the pmf

pr+1 (x) =
pr (x) cr (x)∑
x
pr (x) cr (x)

for all x ∈ X

and repeat the steps above with index r replaced by r + 1.

4.4 Special Cases for Calculation of Channel Capacity

In this section, we study special cases of DMC whose capacity values can
be found (relatively) easily.

Example 4.27. Continue from Example 4.8 where we considered a noiseless
binary channel. Find the corresponding channel capacity.

Example 4.28. Noisy Channel with Nonoverlapping Outputs: Find the
channel capacity of a DMC whose

Q =

[
1/8 7/8 0 0
0 0 1/3 2/3

]
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